编译原理-语法制导翻译实现计算器

任务描述

设计一个文法,匹配合法的计算式,并返回正确计算式的结果。

文法

\begin{align}
&A \rightarrow BC \
&C \rightarrow +BC \mid -BC \mid \varepsilon \
&B \rightarrow DE \
&E \rightarrow *DE \mid /DE \mid \varepsilon \
&D \rightarrow digit \mid (A) \
\end{align}

\begin{align}
FIRST(A) = \Big\lbrace digit,( \Big\rbrace &\quad FOLLOW(A) = \Big\lbrace $,) \Big\rbrace\
FIRST(B) = \Big\lbrace digit,( \Big\rbrace &\quad FOLLOW(B) = \Big\lbrace $,),+,- \Big\rbrace\
FIRST(C) = \Big\lbrace +,-,\varepsilon \Big\rbrace &\quad FOLLOW(C) = \Big\lbrace $,) \Big\rbrace\
FIRST(D) = \Big\lbrace digit,( \Big\rbrace &\quad FOLLOW(D) = \Big\lbrace $,),*,/,+,- \Big\rbrace\
FIRST(E) = \Big\lbrace *,/,\varepsilon \Big\rbrace &\quad FOLLOW(E) = \Big\lbrace $,),+,- \Big\rbrace\
\end{align}

LL(1) 预测分析表

$ $ digit ( ) + - * / $
A $A \rightarrow BC$ $A \rightarrow BC$
B $B \rightarrow DE$ $B \rightarrow DE$
C $C \rightarrow \varepsilon$ $C \rightarrow +BC$ $C \rightarrow -BC$ $C \rightarrow \varepsilon$
D $D \rightarrow digit$ $D \rightarrow (A)$
E $E \rightarrow \varepsilon$ $E \rightarrow \varepsilon$ $E \rightarrow \varepsilon$ $E \rightarrow *DE$ $E \rightarrow /DE$ $E \rightarrow \varepsilon$

SDD

$ $ 产生式 语义规则
0) $A \rightarrow BC$ \begin{align} &C.inh=B.syn \\ &A.syn = C.syn \end{align}
1) $C \rightarrow +BC_1$ \begin{align} &C_1.inh=C.inh + B.syn \\ &C.syn=C_1.syn \end{align}
2) $C \rightarrow -BC_1$ \begin{align} &C_1.inh=C.inh-B.syn \\ &C.syn=C_1.syn \end{align}
3) $C \rightarrow \varepsilon$ \begin{align} C.syn=C.inh \end{align}
4) $B \rightarrow DE$ \begin{align} &E.inh=D.syn \\ & B.syn=E.syn \end{align}
5) $E \rightarrow *DE_1$ \begin{align} &E_1.inh=E.inh \times D.syn \\ &E.syn=E_1.syn \end{align}
6) $E \rightarrow /DE_1$ \begin{align} &E_1.inh=E.inh / D.syn \\ & E.syn=E_1.syn \end{align}
7) $E \rightarrow \varepsilon$ \begin{align} &E.syn=E.inh \end{align}
8) $D \rightarrow digit$ \begin{align} &D.syn = digit.lexval \end{align}
9) $D \rightarrow (A)$ \begin{align} &D.syn = A.syn \end{align*}

程序实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <exception>
#include <algorithm>
using namespace std;

struct node {
int id, syn, inh;
node(int id=0, int syn=0, int inh=0): id(id), syn(syn), inh(inh) {}
};
char key[128];
int M[10][10];
vector<int> v[10];

inline int idx(char c) {
return key[c];
}

inline void initid() {
memset(key, 0, sizeof key);

for(int k='0'; k <= '9'; ++k) key[k] = 1;
key['('] = 2;
key[')'] = 3;
key['+'] = 4;
key['-'] = 5;
key['*'] = 6;
key['/'] = 7;
key['$'] = 8;

key['A'] = -1;
key['B'] = -2;
key['C'] = -3;
key['D'] = -4;
key['E'] = -5;
}

inline void inittable() {
#define pb push_back
for(int i=0; i < 10; ++i) v[i].clear();

v[0].pb(idx('B')); v[0].pb(idx('C')); // A --> BC
v[1].pb(idx('+')); v[1].pb(idx('B')); v[1].pb(idx('C')); // C --> +BC
v[2].pb(idx('-')); v[2].pb(idx('B')); v[2].pb(idx('C')); // C --> -BC
// C --> \varepsilon
v[4].pb(idx('D')); v[4].pb(idx('E')); // B --> DE
v[5].pb(idx('*')); v[5].pb(idx('D')); v[5].pb(idx('E')); // E --> *DE
v[6].pb(idx('/')); v[6].pb(idx('D')); v[6].pb(idx('E')); // E --> /DE
// E --> \varepsilon
v[8].pb(idx('0')); // D --> digit
v[9].pb(idx('(')); v[9].pb(idx('A')); v[9].pb(idx(')')); // D --> (A)

// for(int i=0; i < 10; ++i) reverse(v[i].begin(), v[i].end());
#undef pb

memset(M, -1, sizeof M);
M[1][1] = 0; M[1][2] = 0;
M[2][1] = 4; M[2][2] = 4;
M[3][3] = 3; M[3][4] = 1; M[3][5] = 2; M[3][8] = 3;
M[4][1] = 8; M[4][2] = 9;
M[5][3] = 7; M[5][4] = 7; M[5][5] = 7; M[5][6] = 5; M[5][7] = 6; M[5][8] = 7;
}

int getnum(const char*& s) {
int num = 0;
for(; isdigit(*s); ++s)
num = num*10 + *s-'0';
return num;
}

const int endsym = idx('$');
void work(const char* &s, node& sy, int cur) {
int id = idx(*s);
if( !id ) throw "不识别的符号";

if( sy.id != endsym ) {
if( sy.id == id ) {
if( id == 1 ) {
sy.syn = getnum(s);
} else ++s;
return;
}
if( sy.id > 0 ) throw "error!";
int Mid = M[-sy.id][id];
if( Mid < 0 ) throw "error!";
node sym[4];
for(int i=0; i < v[Mid].size(); ++i)
sym[i].id = v[Mid][i];
if( v[Mid].size() )work(s, sym[0], cur+1);
switch( Mid ) {
case 0:
case 4:
sym[1].inh = sym[0].syn;
work(s, sym[1], cur+1);
sy.syn = sym[1].syn;
break; // A --> BC 或 B --> DE
case 1:
work(s, sym[1], cur+1);
sym[2].inh = sy.inh+sym[1].syn;
work(s, sym[2], cur+1);
sy.syn = sym[2].syn;
break; // C --> +BC
case 2:
work(s, sym[1], cur+1);
sym[2].inh = sy.inh-sym[1].syn;
work(s, sym[2], cur+1);
sy.syn = sym[2].syn;
break; // C --> -BC
case 3:
case 7:
sy.syn = sy.inh;
break; // C --> \epsilon 或 E --> \epsilon
case 5:
work(s, sym[1], cur+1);
sym[2].inh = sy.inh*sym[1].syn;
work(s, sym[2], cur+1);
sy.syn = sym[2].syn;
break; // E --> *DE
case 6:
work(s, sym[1], cur+1);
sym[2].inh = sy.inh/sym[1].syn;
work(s, sym[2], cur+1);
sy.syn = sym[2].syn;
break; // E --> /DE
case 8: sy.syn = sym[0].syn;
break; // D --> digit
case 9:
work(s, sym[1], cur+1);
sy.syn = sym[1].syn;
work(s, sym[2], cur+1);
break; // D --> (A)
}
}
if( cur == 0 ) throw sy.syn;
}

int main()
{
string in;
string coin;
initid();
inittable();
while( getline(cin, in) ) {
in.push_back('$');
int len = in.length();
const char* s = in.c_str();
coin.clear();
for(int i=0; i < len; ++i)
if( s[i] !=' ' && s[i] != '\t' && s[i] != '\n' )
coin.push_back(s[i]);
coin.push_back('\0');
/* 以上去除空格 */

try {
node sy = node(idx('A'));
s = coin.c_str();
work(s, sy, 0);
}
catch(const char* str) {
puts(str);
}
catch(int ans) {
for(int i=0; i < len-1; ++i) putchar(in[i]);
printf(" = %d\n", ans);
printf("succuss!\n");
}
}
return 0;
}